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An attempt was made to model input-output relationships of an electrical discharge machining process
based on the experimental data (collected according to a central composite design) using multiple regression
analysis. Three input parameters, such as peak current, pulse-on-time and pulse-duty-factor, and two
outputs, namely, material removal rate (MRR) and surface roughness (SR) had been considered for the said
modeling. The value of regression coefficient was determined for each model. The performances of the
developed models were tested with the help of some test cases collected through the real experiments and
were found to be satisfactory. It had been posed as an optimization problem and solved using a genetic
algorithm to determine the set(s) of optimal parameters for ensuring the maximumMRR and minimum SR.
It was also formulated as a multi-objective optimization problem and a Pareto-optimal front of solutions
had been obtained.
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1. Introduction

Electrical discharge machining (EDM) is one of the most
widely used non-conventional machining processes. It is an
electro-thermal process that uses thermal energy to machine
any electrically conductive parts regardless of hardness. It has
a wide application in the manufacture of mold, die, and
automotive, aerospace and surgical components (Ref 1). The
performance of this process is influenced by many factors,
such as discharge current, voltage, pulse-on time, pulse-off
time, die-electric flushing pressure, electrode polarity, elec-
trode�s discharging area and processing depth, and others.
They have significant influences on the outputs, namely,
material removal rate (MRR), electrode wear rate (EWR), and
surface roughness (SR).

Optimal selection of process parameters is very much
essential, as it is a costly process to increase MRR considerably
and at the same time, to achieve desired surface finish.
Traditionally, this is carried out by relying heavily on the
operator�s experience or using conservative technological data
provided by the EDM equipment manufacturers, which may
produce inconsistent machining performance. This study aimed
to develop input-output relationships of EDM process using

conventional regression analysis and optimize the process
parameters using a genetic algorithm (GA) (Ref 2, 3).

2. Literature Review

Petropoulos et al. (Ref 4) used statistical multi-parameter
analysis to model surface finish in EDM process. Multiple
statistical regression models were developed and close corre-
lation was observed between SR and EDM input variables.
A SR model was designed by Her and Weng (Ref 5) using
regression analysis of the experimental data. Taguchi�s orthog-
onal array was used for the experimental design. A GA was
used to determine the machining parameters responsible for
optimum surface finish. Puertas and Luis (Ref 6) developed
model of SR of EDM process using a factorial design of
experiments and regression analysis. The most important input
variables were identified and interactions among them were
explained. Modeling of die-sinking EDM process for MRR,
EWR, and SR was carried out by Puertas et al. (Ref 7) using a
factorial design of experiments and multiple regression anal-
ysis. Significant variables were identified for each of the
responses. A mathematical model of the wire-EDM process for
SR was obtained by Kanlayasiri and Boonmung (Ref 8) using
multiple regression analysis. The model was validated using a
new set of experimental data and the maximum prediction error
of the model was found to be <7%. Kanagarajan et al. (Ref 9)
developed statistical models of EDM process based on second
order polynomial equations. Non-dominated sorting genetic
algorithm (NSGA-II) (Ref 10) had been used to optimize the
processing conditions and a set of non-dominated solutions was
reported. The modeling and optimization of the electrical
discharge turning process was carried out by Matoorian et al.
(Ref 11) using statistical analysis and Taguchi�s robust design
method. Mohammadi et al. (Ref 12) derived the model of MRR
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for wire-electrical discharge turning process based on statistical
analysis. Taguchi�s orthogonal array was used for design of
experiments and both regression analysis as well as analysis of
variance (ANOVA) was performed on the experimental data.
Signal-to-noise (S/N) ratio analysis was employed to find the
optimal condition. Haddad and Tehrani (Ref 13) obtained the
regression model of MRR and SR for cylindrical wire electrical
discharge turning of AISI D3 tool steel using the response
surface methodology. Modeling of wire-EDM in trim cutting
operation was done by Sarkar et al. (Ref 14) using a central
composite design (CCD) (Ref 15) and response surface
methodology. Optimization of the trim cutting operation had
been carried out using desirability function approach and
Pareto-optimization algorithm, and the later was found to be the
superior.

In this article, nonlinear regression analysis had been
conducted using the experimental data collected as per CCD
to establish input-output relationships of an EDM process. As it
is a complex and stochastic process, it might be difficult to
determine the optimal input parameters for the best machining
performance, i.e., productivity and quality, MRR and SR. In
this study, MRR and SR had been considered, as the MRR
reflects productivity and surface finish indicates the quality of
the product. It is to be noted that the higher the MRR is, the
more will be the SR. However, the aim of the machining could
be to obtain the maximum MRR after maintaining a good
surface finish. Thus, there exists a conflict. The said problem
had been solved by treating it as both single objective (by
putting both the objective functions in the form of a single
objective) as well as multi-objective optimization problems,
separately. An attempt was also made to obtain Pareto-optimal
front of solutions.

The rest of the text has been organized as follows: Section 3
describes the experimental setup, explains the experimental
procedure and method of data collection. Results are stated and
discussed in Section 4. Concluding remarks are made in
Section 5 and the scope for future work has been indicated
in Section 6.

3. Experimental Data Collection

This section describes the experimental setup, explains the
method of conducting experiments and data collection.

3.1 Experimental Setup

Experiments were conducted on Elektra Eznc Die Sinking
EDM machine (refer to Fig. 1). The machine had a maximum
current capacity of 50 A. According to the convention of normal
polarity, the work-piece is connected to the positive terminal and
the tool is attached to the negative terminal of the source,
whereas for reverse polarity, it is done just the reverse. The
machine had 28 pulse-on time settings and 12 pulse-off time
settings. Experiments were conducted in the reverse polarity.
Experimental data based on the CCD were collected to study the
effects of various machining parameters on EDM process. These
studies had been undertaken to investigate the effects of peak
current, pulse-on-time, and pulse-duty factor on MRR and SR.
Mild steel work-piece had been machined using a copper tool
and paraffin oil was used as the dielectric medium. It is
important to mention that it is also possible to interchange this
job-tool combination in the EDM. Both paraffin oil as well as
de-ionized water can be used as the dielectric medium to
strengthen the flow of electrons. In this study, paraffin oil was
used, as it is the most commonly used one.

3.2 Experimental Procedure

Cylindrical work-pieces of 30.0 mm diameter and 6.0 mm
thickness were used for the experiments. Each sample had been
machined for 1 min. Machining times were measured using a
stop watch. Weights of the work-pieces had been determined
using a digital balance of Afcoset make before and after the
commencement of machining to calculate the MRR. SR values
were measured using a Taylor-Hobson machine.

3.3 Data Collection

Three input variables, namely, peak current, pulse-on-time,
and pulse-duty-factor were identified and their ranges had been
decided through some trial experiments (refer to Table 1). For
the said three input variables, experiments were carried out for
23 + 29 3 + 3 = 17 combinations of them, according to the
CCD (Ref 15). For each combination of input variables,
experiments were conducted for three times, so that the
ANOVA could be carried out. Experimental data to be used
for developing the model and those for testing the same are
shown in Appendices A and B, respectively. Figure 2 displays
the picture of some machined test samples (i.e., test cases
bearing serial numbers 2, 5, and 8 of Appendix B).

Servo system 
to feed tool 

Tool holder

Working tank with 
work holding device 

Stabilizer

Control and 
display unit 
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Fig. 1 Die-sinking EDM machine
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4. Results and Discussion

Input-output relationships of most of the manufacturing
processes (for example, in EDM) are, in general, complex and
nonlinear in nature. Results of nonlinear regression analysis to
establish input-output relationships of this process are stated
and discussed below. Moreover, it had been posed as an
optimization problem and solved using the GA.

4.1 Results of Statistical Regression Analysis

Conventional nonlinear regression analysis was carried out
to ensure a least squared fitting to error surface using a software
named Minitab 14 (Ref 16). The following expression had been
obtained for MRR in coded units:

MRR ¼ 0:355540þ 0:201057x1 � 0:034810x2 þ 0:064493x3

� 0:002604x21 � 0:029771x22 � 0:004854x23

þ 0:033242x1x2 þ 0:035600x1x3 � 0:055483x2x3

ðEq 1Þ

Regression coefficient of the developed model was found to
be equal to 0.978 (which is near to the ideal value of 1.0).
It indicates that the model was adequate enough to make
further predictions. Results of the ANOVA are shown in
Table 2. The model was built for 95% confidence level. As
the probability values (p) for the combined linear, square
and interaction terms were found to be <0.05, they had
significant contributions toward the output: MRR. The terms
used in the ANOVA table are explained in the following
paragraphs.

‘‘Degrees of freedom’’ (DF) is the rank of a quadratic form.
If there are n observations and one parameter (the mean) that
needs to be estimated then it needs n� 1 DF for estimating
variability. As there were 51 observations, DF was 50. The
sequential (sometimes called type I) sums of squares (Seq SS)
measure the reduction in the residual sums of squares provided
by each additional term in the model. The adjusted (sometimes
called type III) sums of squares (Adj SS) measure the reduction
in the residual sums of squares provided by each term relative
to a model containing all the other terms. The sequential and
adjusted sums of squares will be the same for all terms, if the
design matrix is orthogonal. The most common case where this
occurs is with factorial and fractional factorial designs (with no
covariates), when analyzed in coded units. For 95% confidence
level, if the p value (probability) for one or more coefficients is
<0.05, then these coefficients can be called statistically
significant.

The adjusted mean square (Adj MS) values are adjusted
sums of squares (Adj SS) divided by the corresponding DF. The
F value or F ratio is the test statistic used to decide whether
the model as a whole has statistically significant predictive
capability, i.e., whether the regression SS is big enough,
considering the number of variables needed to achieve it. F is
the ratio of the model mean square to the error mean square. If
for a particular type of terms (say linear/square/interaction), the
calculated F value is found to be more than the table-calculated
value, it will have significant contribution toward the response.
The p values tell whether a variable has statistically significant
predictive capability in the presence of the other variables, i.e.,
whether it adds something to the equation. In some circum-
stances, a non-significant p value might be used to determine
whether to remove a variable from a model without signifi-
cantly reducing the model�s predictive capability.

Table 1 Input variables and their ranges

S.
no.

Input
variables

Uncoded
symbol

Coded
symbol

Minimum
value

Mid-
value

Maximum
value

1 Peak
current, A

Ip X1 6 12 18

2 Pulse-on-time,
ls

Ton X2 50 400 750

3 Pulse-duty-
factor

t X3 4 8 12

Fig. 2 EDM machined test samples bearing serial numbers 2, 5,
and 8 of Appendix B

Table 2 Results of ANOVA for MRR

Source DF Seq SS Adj SS Adj MS F p

Regression 9 1.51897 1.51897 0.168775 250.20 0.000
Linear 3 1.37385 1.37385 0.457949 678.88 0.000
Square 3 0.01430 0.01430 0.004768 7.07 0.001
Interaction 3 0.13082 0.13082 0.043606 64.64 0.000
Residual error 41 0.02766 0.02766 0.000675
Lack-of-fit 5 0.02415 0.02415 0.004831 49.62 0.000
Pure error 36 0.00350 0.00350 0.000097
Total 50 1.54663

Journal of Materials Engineering and Performance Volume 20(7) October 2011—1123



The said response had been expressed in terms of un-coded
units of input variables as given below.

MRR¼�0:112931þ0:0170470Ipþ0:000222059Ton

þ0:0190297t�7:23331�10�5I2p �2:43026�10�7T2
on

�3:03374�10�4t2þ1:58294�10�5IpTon

þ0:00148333Ipt�3:96310�10�5Tont (Eq 2)

Figure 3(a) shows that MRR increased with peak current Ip.
Moreover, it increased initially with pulse-on-time Ton and
then decreased with a further increase of pulse-on-time. The
relationship between MRR and Ip was found to be more or
less linear, whereas that between MRR and Ton was seen to
be nonlinear. Figure 3(b) displays the similar relationship
between MRR and Ip as explained above, whereas MRR was
seen to increase with the pulse-duty-factor t. Figure 3(c)
shows the relationship between MRR and Ton and that
between MRR and t, which exactly matched with those men-
tioned above. MRR increased with Ip because energy input
per pulse increased as the peak current increases. MRR was
found to increase with t also, as pulse frequency increased
with the pulse duty factor for the same Ton. However, MRR
initially increased with Ton because pulse energy increased
but decreased after a certain value of the same. For the larger
Ton or discharge duration, a very large plasma diameter was
formed which led to global expansion of the plasma channel.
Due to this reason, pressure and energy of the plasma channel

diminished over the molten metal of the electrodes. As a con-
sequence, this phenomenon brought instability into the pro-
cess lowering the MRR. Thus, to summarize, MRR increased
more or less linearly with Ip and t, and it increased initially
and then decreased nonlinearly with Ton.

The performance of the developed model had been tested on
10 experimentally observed cases, which had not been
considered in developing the same. Some of the machined test
samples are shown in Fig. 2. Figure 4 displays the values of %
deviation in prediction of MRR for the said 10 test cases. The
average absolute % deviation in predictions was found to be
equal to 10.3.

Similarly, nonlinear regression model had been developed
for the other response: SR. The regression coefficient was seen
to be equal to 0.856. Table 3 shows the results of the ANOVA.
All the linear, square, and interaction terms were found to have
significant contributions toward the response: SR.

Regression equation for SR (expressed in uncoded units)
was found to be as follows:

SR ¼ 1:76966þ 0:882071Ip þ 0:00686577Ton � 0:447132t

� 0:0373631I2p � 9:89173� 10�6T 2
on

þ 0:0221831t2 þ 0:000517857IpTon þ 0:0109375Ipt

� 2:76786� 10�4Tont (Eq 3)

Figure 5 displays the surface plots of SR, expressed as the
functions of input factors. SR was found to have nonlinear
relationships with Ip and Ton. Initially, SR increased with both
Ip and Ton and then it was seen to decrease with them at the
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Fig. 3 Surface plots for MRR: (a) MRR vs. Ip and Ton, (b) MRR
vs. Ip and t, and (c) MRR vs. Ton and t
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Fig. 4 Percent deviations in predictions of MRR

Table 3 Results of ANOVA for SR

Source DF Seq SS Adj SS Adj MS F p

Regression 9 204.034 204.034 22.6704 34.12 0.000
Linear 3 119.171 119.171 39.7236 59.78 0.000
Square 3 51.222 51.222 17.0739 25.70 0.000
Interaction 3 33.641 33.641 11.2138 16.88 0.000
Residual error 41 27.243 27.243 0.6645
Lack-of-fit 5 17.261 17.261 3.4521 12.45 0.000
Pure error 36 9.982 9.982 0.2773
Total 50 231.276
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end (refer to Fig. 5a). Pulse energy increased with Ip and Ton,
and resulted an increase in volume of material removal per
pulse or crater size. As a consequence, SR also increased.
However, very high values of Ip and Ton made the process
unstable and reduced MRR and SR. Moreover, a close watch
on Fig. 5(b) and (c) reveals that almost a linear relationship
could exist between SR and t.

The test cases had been passed through the said
developed model on SR. The values of % deviation in
predictions of SR are shown in Fig. 6. The value of average
absolute % deviation in predictions of SR was found to be
equal to 7.8.

4.2 Single Objective Optimization

Both MRR as well as SR had been expressed separately, as
the nonlinear functions of input variables, such as Ip, Ton, and
t. Now, our aim was to maximize the MRR and minimize the
SR simultaneously, in EDM process. To determine the set of
input variables in order to satisfy both the above criteria, it had
been solved using a GA. The problem had been formulated as a
maximization problem considering both the objective functions
as given below:

Maximize Y ¼ MRRþ 1=SR;

subject to 6:0 � Ip � 18:0;

50:0 � Ton � 750:0;

4:0 � t � 12:0:

Thus, a problem having two objective functions had been for-
mulated as a single objective optimization problem. A binary-
coded GA had been used to solve the said problem. Ten bits
(i.e., binary numbers: 1, 0) were assigned to represent each
variable. Thus, the GA-string was found to be 30-bits long.
Tournament selection scheme had been adopted in this study,
in which a few strings (whose number is kept equal to the
tournament size) are taken at random from the population and
the best one is selected for the mating pool. The process con-
tinues, until the size of mating pool becomes equal to the
population size. A single-point crossover and bit-wise muta-
tion had been used in this study. As the performance of a GA
depends on its parameters, a systematic thorough study (Ref 3)
had been conducted to determine the set of optimal parameters.
Results of a part of the said study are shown in Fig. 7.

The GA through its exhaustive search had determined the
following set of optimal input parameters: Ip = 17 A,
Ton = 138 ls, and t = 11. The corresponding outputs: MRR
and SR were found to be equal to 0.6089 g/min and 7.3 lm,
respectively. Experiments had been conducted for the said set
of optimal input parameters and the responses: MRR and SR
had been measured. As the machine used for this experiment
did not have the provision to set Ton at 138 ls, machining had
been done at the nearest available Ton, i.e., 150 ls. Thus, the
input parameters had been set at Ip = 17 A, Ton = 150 ls, and
t = 11. Experimental values of the outputs: MRR and SR had
been found to be equal to 0.4798 g/min and 7.7 lm, respec-
tively. It is interesting to note that the experimentally found
MRR was seen to be slightly less than that obtained by the GA.
It might have happened due to the fact that Ton had been set at
150 ls in place of 138 ls, while conducting the real experi-
ment. The said reason had been verified through a trivial
calculation of MRR using the regression equation. It is also
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important to note that the experimentally observed SR value
(i.e., 7.7 lm) was found to be almost the same with that
determined by the GA (i.e., 7.3 lm).

4.3 Multi-Objective Optimization

Our aim was to maximize the MRR after maintaining
a minimum value for SR. It is difficult to obtain the same, as
both MRR as well as SR increase simultaneously. Thus, there is
a conflict and consequently, it became an ideal problem to be
tackled using a multi-objective GA. A non-dominated sorting
GA (i.e., NSGA-II) (Ref 10) had been used to obtain the
Pareto-optimal front of solutions (refer to Fig. 8). The Pareto-
optimal front is defined as the locus of all optimal solutions
obtained after putting different weights on 1/MRR and SR
artificially. The working cycle of NSGA-II is explained through
a few steps given below.

1. The initial population is generated randomly based on the
ranges of variables of the problem.

2. The initialized population is then sorted based on non-
domination into a few fronts.

3. Each individual of every front is assigned a rank (fitness)
and a crowding distance value. Individuals in the first
front are given a fitness value of 1 and individuals in sec-
ond front are assigned fitness value of 2, and so on.
Crowding distance is calculated for each individual as a
measure of how close an individual is to its neighbors.

4. Parents are selected from the population using binary
tournament selection based on rank and crowding dis-
tance.

5. The selected population generates offspring�s through
crossover and mutation operations.

6. The solutions in current population and current offsprings
are sorted again based on non-domination and only the
best individuals are selected. The selection is based on
the rank and crowding distance on the last front.

It is important to notice that a continuous Pareto-optimal
front of solutions could not be achieved for this problem. It
could have happened due to the fact that no optimal solution
could exist in some portions of the range of input variables, in
order to satisfy both the objective functions simultaneously. It is
also interesting to note that a large number of optimal solutions
lying on the obtained Pareto front are available to the user.

He/She could choose a particular optimal solution lying on the
Pareto front and determine the corresponding set of input
variables as shown in Table 4.

5. Concluding Remarks

Nonlinear regression analysis had been conducted to
establish the relationships of MRR and SR separately with
the input variables Ip, Ton, and t. MRR was found to increase
more or less linearly with Ip and t, and it increased initially and
then decreased nonlinearly with Ton. Moreover, SR was seen to
have nonlinear relationships with Ip and Ton, but a more or less
linear relationship with t. Both the regression models had
performed well in predicting the results of some test cases.
More or less 10% deviations in prediction of the responses had
been reported for both of them on the test cases. An attempt had
also been made to obtain a set of input variables corresponding
to the simultaneous maximum and minimum values of MRR
and SR, respectively. The obtained optimal results had also
been tested through a real experiment and found to be
satisfactory. It had also been treated as a multi-objective
optimization problem and solved using a multi-objective GA,
named NSGA-II. An interesting Pareto-optimal front of
solutions had been obtained consequently, which might
be used to select an optimal solution depending on the
requirement.

6. Scope for Future Work

In future, an attempt will be made to understand the
microstructures through microscopic analysis. To automate a
process, input-output relationships are to be known before-hand
in both forward as well as reverse directions. The authors are
working, at present, on these issues.
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Table 4 A few points lying on the Pareto-optimal front
and their corresponding inputs

S. no. MRR, g/min SR, lm Ip, A Ton, ls t

1 0.2090 4.4 6 50 10
2 0.3030 5.2 7 50 12
3 0.4910 5.6 18 50 7
4 0.6720 6.5 18 618 12
5 0.0480 4.1 6 718 11
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Appendix B Data collected for testing the models
of MRR and SR

S. no.

Inputs Outputs

Ip, A Ton, ls t MRR, g/min SR, lm

1 7 150 11 0.2389 6.5
2 8 200 11 0.2660 7.1
3 9 300 10 0.2649 6.7
4 10 300 10 0.3164 8.6
5 11 400 9 0.3472 8.8
6 13 500 9 0.4073 8.7
7 14 500 7 0.3903 10.6
8 15 750 9 0.3641 8.5
9 16 750 10 0.4090 9.8
10 17 750 11 0.4255 9.3

Appendix A Experimental data collected as per CCD

S. no.

Inputs

Outputs

MRR, g/min SR, lm

Ip, A Ton, ls t First Second Third Avg. First Second Third Avg.

1 6 50 4 0.1334 0.1204 0.1157 0.1180 4.5 4.4 4.9 4.6
2 18 50 4 0.3411 0.3322 0.3318 0.3320 6.5 6.6 6.3 6.5
3 6 750 4 0.0749 0.0761 0.0738 0.0749 6.2 6.4 6.0 6.2
4 18 750 4 0.4887 0.5022 0.4954 0.4954 10.0 9.3 10.8 10.0
5 6 50 12 0.2457 0.2524 0.2390 0.2457 5.5 5.3 5.6 5.5
6 18 50 12 0.6585 0.6756 0.6928 0.6756 6.0 5.8 6.2 6.0
7 6 750 12 0.0513 0.0582 0.0441 0.0547 3.1 3.1 3.2 3.1
8 18 750 12 0.5307 0.5374 0.5472 0.5340 10.4 10.6 10.2 10.4
9 6 400 8 0.1342 0.1237 0.1198 0.1217 5.1 5.0 5.5 5.2
10 18 400 8 0.5869 0.5673 0.6066 0.5869 8.7 8.5 8.3 8.5
11 12 50 8 0.3935 0.3774 0.4097 0.3935 5.4 5.2 5.7 5.4
12 12 750 8 0.2609 0.2638 0.2702 0.2623 8.5 8.5 8.6 8.5
13 12 400 4 0.2684 0.2774 0.2729 0.2729 8.8 9.2 8.5 8.8
14 12 400 12 0.4354 0.4331 0.4378 0.4354 8.1 8.3 8.4 8.3
15 12 400 8 0.3307 0.3402 0.3572 0.3354 9.0 7.7 10.4 9.0
16 12 400 8 0.3564 0.3582 0.3577 0.3574 10.1 10.0 10.2 10.1
17 12 400 8 0.3588 0.3470 0.3519 0.3553 8.5 8.7 8.3 8.5
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